Facial Detection+Recognition-Jetson Nano-OpenCV

Really appreciate the revert.

I’m unable to get a basic facial recognition code below to run at a respectable FPS. The code below only runs at 1-2FPS, which is why I thought of incorporating DLib.

import face_recognition
import cv2
import os
import pickle
import time
print(cv2.__version__)

fpsReport=0
scaleFactor=.25

Encodings=[]
Names=[]

with open('train.pkl','rb') as f:
    Names=pickle.load(f)
    Encodings=pickle.load(f)

font=cv2.FONT_HERSHEY_SIMPLEX
cam=cv2.VideoCapture(0)   

timeStamp=time.time()
while True:
    _,frame=cam.read()
    frameSmall=cv2.resize(frame,(0,0),fx=scaleFactor,fy=scaleFactor)
    frameRGB=cv2.cvtColor(frameSmall,cv2.COLOR_BGR2RGB)
    facePositions=face_recognition.face_locations(frameRGB,model='CNN')
    allEncodings=face_recognition.face_encodings(frameRGB,facePositions)
    for (top,right,bottom,left),face_encoding in zip(facePositions,allEncodings):
        name='Unknown Person'
        matches=face_recognition.compare_faces(Encodings,face_encoding)
        if True in matches:
            first_match_index=matches.index(True)
            name=Names[first_match_index]
        top=int(top/scaleFactor)
        right=int(right/scaleFactor)
        bottom=int(bottom/scaleFactor)
        left=int(left/scaleFactor)
        cv2.rectangle(frame,(left,top),(right,bottom),(0,0,255),2)
        cv2.putText(frame,name,(left,top-6),font, .75, (0,0,255),2) 
    dt=time.time()-timeStamp
    fps=1/dt
    fpsReport=0.90*fps + 0.1*fps
    #print('fps is: ',round(fpsReport,2))
    timeStamp=time.time()
    cv2.rectangle(frame,(0,0),(100,40),(0,0,255),-1)
    cv2.putText(frame,str(round(fpsReport,1)) + 'fps',(0,25), font, .75, (0,255,255,2))
    cv2.imshow('Picture',frame)
    cv2.moveWindow('Picture',0,0)
    if cv2.waitKey(1)==ord('q'):
        break

cam.release()        
cv2.destroyAllWindows()

Kindly suggest ways I could get output video frame rate to about about atleast 15 fps.

PS-I have OpenCV compiled with GStreamer, Cuda and cuDNN support on my Jetson nano.