Chirality Check for decomposeHomographyMat

Hi everyone. I’m searching for an equal function like recoverPose() for Homography Matrix.
In particular, i’m interested to obtain the number of inlier that pass the cheirality check.

I’ve tried to implement my self. Is it correct?

int recoverPoseHomography(Mat H, KpAsPoint2f_Match inlier, Mat cameraMatrix, Mat& R, Mat& t)
{
    //Decompose Homography Matrix
    vector<Mat> R_candidates, t_candidates;
    int solutions = decomposeHomographyMat(H, cameraMatrix, R_candidates, t_candidates, noArray());

    //n_solutions usually 4
    //Cheirality Check: triangulated_points.z > 0

    Mat eye_m = (Mat1d(3, 3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
    Mat zero_v = (Mat1d(3, 1) << 0, 0, 0);
    Mat proj_std = projectionMatrix(eye_m, zero_v, cameraMatrix);

    vector<Mat> triangulateCandidates(solutions);
    vector<int> n_goodTP(solutions);

    for(int i = 0; i < solutions; i++)
    {
        triangulatePoints(proj_std, projectionMatrix(R_candidates[i], t_candidates[i], cameraMatrix), inlier.Kpoints1, inlier.Kpoints2, triangulateCandidates[i]);
        triangulateCandidates[i] = my_convertFromHom(triangulateCandidates[i]);

        for(int j = 0; j < triangulateCandidates[i].cols; j++)
        {
            if(triangulateCandidates[i].at<double>(2, j) > 0)
                n_goodTP[i]++;

        }

    }
    
    //extract index of best candidates
    int idx_max = max_element(n_goodTP.begin(), n_goodTP.end()) - n_goodTP.begin();

R = R_candidates[idx_max];
t = t_candidates[idx_max];

return n_goodTP[idx_max];
}