The following code detects red, blue, and green colored objects and put bounding box around them. I want it to only detect the largest red, blue, and green object if more than one object of the same color exists. So if there are two red objects, two green objects, and two blue objects in the image, it should only detect the largest red, largest blue, and largest green object, and show their centroid.
import cap
import numpy as np
import cv2
# Capturing video through webcam
webcam = cv2.VideoCapture(0)
# Start a while loop
while (1):
# Reading the video from the
# webcam in image frames
_, imageFrame = webcam.read()
# Convert the imageFrame in
# BGR(RGB color space) to
# HSV(hue-saturation-value)
# color space
hsvFrame = cv2.cvtColor(imageFrame, cv2.COLOR_BGR2HSV)
# Set range for red color and
# define mask
red_lower = np.array([136, 87, 111], np.uint8)
red_upper = np.array([180, 255, 255], np.uint8)
red_mask = cv2.inRange(hsvFrame, red_lower, red_upper)
# Set range for green color and
# define mask
green_lower = np.array([25, 52, 72], np.uint8)
green_upper = np.array([102, 255, 255], np.uint8)
green_mask = cv2.inRange(hsvFrame, green_lower, green_upper)
# Set range for blue color and
# define mask
blue_lower = np.array([94, 80, 2], np.uint8)
blue_upper = np.array([120, 255, 255], np.uint8)
blue_mask = cv2.inRange(hsvFrame, blue_lower, blue_upper)
# Morphological Transform, Dilation
# for each color and bitwise_and operator
# between imageFrame and mask determines
# to detect only that particular color
kernal = np.ones((5, 5), "uint8")
# For red color
red_mask = cv2.dilate(red_mask, kernal)
res_red = cv2.bitwise_and(imageFrame, imageFrame,
mask=red_mask)
# For green color
green_mask = cv2.dilate(green_mask, kernal)
res_green = cv2.bitwise_and(imageFrame, imageFrame,
mask=green_mask)
# For blue color
blue_mask = cv2.dilate(blue_mask, kernal)
res_blue = cv2.bitwise_and(imageFrame, imageFrame,
mask=blue_mask)
# Creating contour to track red color
contours, hierarchy = cv2.findContours(red_mask,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if (area > 300):
x, y, w, h = cv2.boundingRect(contour)
imageFrame = cv2.rectangle(imageFrame, (x, y),
(x + w, y + h),
(0, 0, 255), 2)
cv2.putText(imageFrame, "Red Colour", (x, y),
cv2.FONT_HERSHEY_SIMPLEX, 1.0,
(0, 0, 255))
# Creating contour to track green color
contours, hierarchy = cv2.findContours(green_mask,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if (area > 300):
x, y, w, h = cv2.boundingRect(contour)
imageFrame = cv2.rectangle(imageFrame, (x, y),
(x + w, y + h),
(0, 255, 0), 2)
cv2.putText(imageFrame, "Green Colour", (x, y),
cv2.FONT_HERSHEY_SIMPLEX,
1.0, (0, 255, 0))
# Creating contour to track blue color
contours, hierarchy = cv2.findContours(blue_mask,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if (area > 300):
x, y, w, h = cv2.boundingRect(contour)
imageFrame = cv2.rectangle(imageFrame, (x, y),
(x + w, y + h),
(255, 0, 0), 2)
cv2.putText(imageFrame, "Blue Colour", (x, y),
cv2.FONT_HERSHEY_SIMPLEX,
1.0, (255, 0, 0))
# Program Termination
cv2.imshow("Multiple Color Detection in Real-TIme", imageFrame)
if cv2.waitKey(10) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break