Distorted triangulated points after stereoCalibrate

Hello,

I want to calibrate stereo cameras pair and create a triangulated view of detected points, but the triangulation returns quite distorted object.

I use 2 cameras, 100 calibration image pairs.
Both cameras are the same type.
Resolution is 1280x720

Here’s an example of images I use:

Left image
Right image

Right image

The code is as follows:

SQ_WIDTH = 12  
SQ_HEIGHT = 9  
SQUARE_LENGTH = 0.040
MARKER_LENGTH = 0.030
dictionary = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_4X4_50)
board = cv2.aruco.CharucoBoard((SQ_WIDTH, SQ_HEIGHT), SQUARE_LENGTH, MARKER_LENGTH, dictionary)

# Right camera
[repr_errorR, mtxR, distR, rvecsR, tvecsR] = cv2.aruco.calibrateCameraCharuco(imgpoints_corners_R, corner_idsR, board, grayR.shape[::-1], None, None)
# Left camera
[repr_errorL, mtxL, distL, rvecsL, tvecsL] = cv2.aruco.calibrateCameraCharuco(imgpoints_corners_L, corner_idsL, board, grayL.shape[::-1], None, None)

[INFO] Reprojection error for Right camera: 0.18419312441875527
[INFO] Reprojection error for Left camera: 0.18229800250761574

retS, mtxLS, distLS, mtxRS, distRS, R, T, E, F = cv2.stereoCalibrate(stereo_objpoints,
                                                                         stereo_cornersL,stereo_cornersR,
                                                                         mtxL, distL,
                                                                         mtxR,distR,
                                                                         grayL.shape[::-1],
                                                                         criteria,
                                                                         stereocalib_flags)
    
[INFO] Stereo calibration reprojection error: 0.4741365312866202

Resulting calibration data are:

mtxR = np.array([[626.20510139,   0.        , 633.79508752],
       [  0.        , 625.95696507, 366.69429711],
       [  0.        ,   0.        ,   1.        ]])
mtxLS = np.array([[619.61110357,   0.        , 640.58960374],
       [  0.        , 619.41011075, 367.13741063],
       [  0.        ,   0.        ,   1.        ]])

distRS = np.array([[ 1.09526185e-01, -1.04717454e-01,  6.01798088e-05, -1.26580066e-03,  5.37722921e-02]])
distLS = np.array([[ 0.10360878, -0.09521651, -0.00036414, -0.00022415,  0.04692143]])

R = np.array([[ 0.97487946,  0.0731213 ,  0.21038847],
       [-0.08119302,  0.99624754,  0.02997549],
       [-0.20740715, -0.04630456,  0.97715821]])

T = np.array([[-0.21914937],
       [ 0.06513346],
       [ 0.0963156 ]])

I do several checks to determine calibration quality, such as drawing epipolar lines and rectification:

# drawing epipolar lines
S = cv2.stereoRectify(mtxL, distL, mtxR, distR, size, RL[:,:3], RL[:,-1])
R1, R2, P1, P2, Q, roi1, roi2 = S

for img_id, (pts1, pts2) in enumerate(zip(stereo_cornersL, stereo_cornersR)):
	
	img1 = cv2.imread(left_images[img_id])
	img2 = cv2.imread(right_images[img_id])

	lines1 = cv2.computeCorrespondEpilines(pts2, 2, F)
	lines2 = cv2.computeCorrespondEpilines(pts1, 1, F)
	
	img1_show, img2 = drawlines(img1, img2, lines1.squeeze(), 
						   pts1, pts2)
	#Making copy because drawlines function modifies the image
	img1_show = np.copy(img1_show)
	img3_show, img4 = drawlines(img2, img1, lines2.squeeze(), 
				pts2, pts1)

Left epipolar
Right epipolar

 #rectification
map1x, map1y = cv2.initUndistortRectifyMap(mtxL, distL, R1, P1, size, cv2.CV_16SC2)
map2x, map2y = cv2.initUndistortRectifyMap(mtxR, distR, R2, P2, size, cv2.CV_16SC2)
  
img1_remap = cv2.remap(imgL, map1x, map1y, cv2.INTER_LINEAR)
img2_remap = cv2.remap(imgR, map2x, map2y, cv2.INTER_LINEAR)
  
img1_remap = cv2.rectangle(img1_remap, roi1[:2], roi1[2:], (0,255,0), 3)
img2_remap = cv2.rectangle(img2_remap, roi2[:2], roi1[2:], (0,255,0), 3)
  
img_rect_stack = np.hstack((img1_remap, img2_remap))

Rectified pair

But on triangulaton I get really distorted target.

Triangulated target and cameras.

I reproject triangulated points and the result is distorted as well:
Left reprojected charuco points/grid
Right reprojected charuco points/grid

My triangulation code is as follows:

#projection matrices
PR = mtxR @  np.eye(4)[:3]
RL = np.hstack(R, T)
PL = mtxL @ RL

def projectPoints(X, K, R, t, Kd):
    #Source: https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox/blob/master/python/demo_3Dkeypoints_reprojection_hd.py
    x = np.asarray(R@X + t)
    x[0:2,:] = x[0:2,:]/x[2,:]
    r = x[0,:]*x[0,:] + x[1,:]*x[1,:]
    x[0,:] = x[0,:]*(1 + Kd[0]*r + Kd[1]*r*r + Kd[4]*r*r*r) + 2*Kd[2]*x[0,:]*x[1,:] + Kd[3]*(r + 2*x[0,:]*x[0,:])
    x[1,:] = x[1,:]*(1 + Kd[0]*r + Kd[1]*r*r + Kd[4]*r*r*r) + 2*Kd[3]*x[0,:]*x[1,:] + Kd[2]*(r + 2*x[1,:]*x[1,:])
    x[0,:] = K[0,0]*x[0,:] + K[0,1]*x[1,:] + K[0,2]
    x[1,:] = K[1,0]*x[0,:] + K[1,1]*x[1,:] + K[1,2]
    
    return x

def draw_charuco_grid_2d(img, board, pointIds, points, color="green"):
    if color == "green":
        color = (0,255,0)
    elif color == "red":
        color = (0,0,255)
    else:
        raise ValueError("Invalid color. Only green and red are supported.")

    board_idxs = np.arange(0, len(board.getChessboardCorners()))
    board_idxs = board_idxs.reshape(board.getChessboardSize()[1]-1,
                                    board.getChessboardSize()[0]-1)
    for row in board_idxs:
        for el in range(1, len(row)):
            point1idx = row[el-1]
            point2idx = row[el]
            point1idx = np.where(pointIds==point1idx)
            point2idx = np.where(pointIds==point2idx)
            
            if len(point1idx[0]) == 0 or len(point2idx[0]) == 0:
                continue
            pt1 = [int(x) for x in  points[point1idx][0]]
            pt2 = [int(x) for x in  points[point2idx][0]]
            img = cv2.line(img, pt1, pt2, color, 2)
    
    for column in board_idxs.T:
        for el in range(1, len(column)):
            point1idx = column[el-1]
            point2idx = column[el]
            point1idx = np.where(pointIds==point1idx)
            point2idx = np.where(pointIds==point2idx)
            
            if len(point1idx[0]) == 0 or len(point2idx[0]) == 0:
                continue
            pt1 = [int(x) for x in  points[point1idx][0]]
            pt2 = [int(x) for x in  points[point2idx][0]]
            img = cv2.line(img, pt1, pt2, color, 2)

    return img

IDX = 0
pointsL = calibration["frame_cornersL"][IDX]
pointsR = calibration["frame_cornersR"][IDX]

idsL = calibration["frame_idsL"][IDX]
idsR = calibration["frame_idsR"][IDX]

imgL = cv2.imread(left_images[IDX])
imgR = cv2.imread(right_images[IDX])

p3d_cv= []   
for uv1, uv2 in zip(pointsL.squeeze(), pointsR.squeeze()):
	_p3d_cv = cv2.triangulatePoints(PL, PR, uv1, uv2)
	p3d_cv.append(_p3d_cv)
		
p3d_cv = p3d_cv.squeeze()[:,:3] / p3d_cv.squeeze()[:,3].reshape(len(p3d_cv), 1)

projected_points_L_cmu = []
projected_points_R_cmu = []
for p in p3d_cv:
	p = p.reshape(3,1)
	K = mtxL
	R = RL[:3,:3]
	t = RL[:,3].reshape(3,1)
	Kd = distL.reshape(5,)
	ret = projectPoints(p, K, R, t, Kd)
	projected_points_L_cmu.append(ret)

for p in p3d_cv:
	p = p.reshape(3,1)
	K = mtxR
	R = RR[:3,:3]
	t = RR[:,3].reshape(3,1)
	Kd = distR.reshape(5,)
	ret = projectPoints(p, K, R, t, Kd)
	projected_points_R_cmu.append(ret)

projected_points_L_cmu = np.stack(projected_points_L_cmu)
projected_points_R_cmu = np.stack(projected_points_R_cmu)

projected_points_L_cmu = projected_points_L_cmu.reshape(-1, 1, 3)[:,:,:2]
projected_points_R_cmu = projected_points_R_cmu.reshape(-1, 1, 3)[:,:,:2]

frameL = draw_charuco_grid_2d(imgL, board, idsL, pointsL, color="green")
frameR = draw_charuco_grid_2d(imgR, board, idsR, pointsR, color="green")

frameL = draw_charuco_grid_2d(frameL, board, idsL, projected_points_L_cmu, color="red")
frameR = draw_charuco_grid_2d(frameR, board, idsR, projected_points_R_cmu, color="red")

I don’t know what might be the result of such distortion, as seemingly all intermediate steps before triangulation return reasonable results.

Any help would be appreciated.

1 Like

Please excuse answering my own issue, buy maybe someone will run into the same problem in the future.

Turns out mistake was in applying calibration parameters left to right and other way round in triangulation step and in reprojection step.

After changing the order of passing projection matrices to:

cv2.triangulatePoints(PR, PL, uv1, uv2)

and

  for p in p3d_cv:
      p = p.reshape(3,1)
      K = mtxR
      R = RR[:3,:3]
      t = RR[:,3].reshape(3,1)
      Kd = distR.reshape(5,)
      ret = projectPoints(p, K, R, t, Kd)
      projected_points_L_cmu.append(ret)

  for p in p3d_cv:
      p = p.reshape(3,1)
      K = mtxL
      R = RL[:3,:3]
      t = RL[:,3].reshape(3,1)
      Kd = distL.reshape(5,)
      ret = projectPoints(p, K, R, t, Kd)
      projected_points_R_cmu.append(ret)

my triangulation and reprojection are good.