Luis_Benavides_Dalme:
Shared
Hi Berak,
Thanks a lot for your answer !
Right now, I am working on your suggestions .
By the way, model.eval() is executed in the inference method before I added my code so I cannot explain what happens but I will try with the Scatter layer deprecated information .
I added the error message :
ONNX export failed: Couldn't export Python operator Scatter Defined at: C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\scatter_gather.py(19): scatter_map C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\scatter_gather.py(23): scatter_map C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\scatter_gather.py(36): scatter C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\scatter_gather.py(44): scatter_kwargs C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\data_parallel.py(174): scatter C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\data_parallel.py(157): forward C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\modules\module.py(860): _slow_forward C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\modules\module.py(887): _call_impl D:\Development\work now\emgu_newFeatures\DB\structure\model.py(56): forward C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\modules\module.py(860): _slow_forward C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\modules\module.py(887): _call_impl C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\jit\_trace.py(116): wrapper C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\jit\_trace.py(130): forward C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\modules\module.py(889): _call_impl C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\jit\_trace.py(1139): _get_trace_graph C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\utils.py(377): _trace_and_get_graph_from_model C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\utils.py(417): _create_jit_graph C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\utils.py(456): _model_to_graph C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\utils.py(698): _export C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\utils.py(94): export C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\onnx\__init__.py(276): export D:\Development\work now\emgu_newFeatures\DB\demo.py(159): inference D:\Development\work now\emgu_newFeatures\DB\demo.py(50): main D:\Development\work now\emgu_newFeatures\DB\demo.py(178): <module> c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_vendored\pydevd\_pydev_imps\_pydev_execfile.py(25): execfile c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_vendored\pydevd\pydevd.py(1106): _exec c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_vendored\pydevd\pydevd.py(1099): run c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_vendored\pydevd\pydevd.py(1752): main c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_local.py(125): _run c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\_local.py(64): run_file c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\Packages\ptvsd\debugger.py(37): debug c:\program files (x86)\microsoft visual studio\2017\professional\common7\ide\extensions\microsoft\python\core\ptvsd_launcher.py(119): <module> Graph we tried to export: graph(%input : Float(1, 3, 736, 960, strides=[2119680, 706560, 960, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.conv2_offset.weight : Float(27, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.conv2.weight : Float(128, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.bn2.weight : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.bn2.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.0.bn2.running_mean : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.0.bn2.running_var : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.1.conv2_offset.weight : Float(27, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.1.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.1.conv2.weight : Float(128, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.1.bn2.weight : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.1.bn2.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.1.bn2.running_mean : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.1.bn2.running_var : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.2.conv2_offset.weight : Float(27, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.2.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.2.conv2.weight : Float(128, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.2.bn2.weight : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.2.bn2.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.2.bn2.running_mean : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.2.bn2.running_var : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.3.conv2_offset.weight : Float(27, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.3.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.3.conv2.weight : Float(128, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.3.bn2.weight : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.3.bn2.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer2.3.bn2.running_mean : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer2.3.bn2.running_var : Float(128, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.0.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.0.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.0.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.0.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.0.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.0.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.0.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.1.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.1.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.1.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.1.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.1.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.1.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.1.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.2.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.2.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.2.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.2.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.2.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.2.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.2.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.3.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.3.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.3.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.3.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.3.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.3.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.3.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.4.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.4.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.4.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.4.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.4.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.4.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.4.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.5.conv2_offset.weight : Float(27, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.5.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.5.conv2.weight : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.5.bn2.weight : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.5.bn2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer3.5.bn2.running_mean : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer3.5.bn2.running_var : Float(256, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.0.conv2_offset.weight : Float(27, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.0.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.0.conv2.weight : Float(512, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.0.bn2.weight : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.0.bn2.bias : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.0.bn2.running_mean : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.0.bn2.running_var : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.1.conv2_offset.weight : Float(27, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.1.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.1.conv2.weight : Float(512, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.1.bn2.weight : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.1.bn2.bias : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.1.bn2.running_mean : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.1.bn2.running_var : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.2.conv2_offset.weight : Float(27, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.2.conv2_offset.bias : Float(27, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.2.conv2.weight : Float(512, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.2.bn2.weight : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.2.bn2.bias : Float(512, strides=[1], requires_grad=1, device=cuda:0), %model.module.backbone.layer4.2.bn2.running_mean : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.backbone.layer4.2.bn2.running_var : Float(512, strides=[1], requires_grad=0, device=cuda:0), %model.module.decoder.in5.weight : Float(256, 2048, 1, 1, strides=[2048, 1, 1, 1], requires_grad=1, device=cuda:0), %model.module.decoder.in4.weight : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=1, device=cuda:0), %model.module.decoder.in3.weight : Float(256, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=1, device=cuda:0), %model.module.decoder.in2.weight : Float(256, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=1, device=cuda:0), %model.module.decoder.out5.0.weight : Float(64, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.decoder.out4.0.weight : Float(64, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.decoder.out3.0.weight : Float(64, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.decoder.out2.weight : Float(64, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.3.weight : Float(64, 64, 2, 2, strides=[256, 4, 2, 1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.3.bias : Float(64, strides=[1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.4.weight : Float(64, strides=[1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.4.bias : Float(64, strides=[1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.4.running_mean : Float(64, strides=[1], requires_grad=0, device=cuda:0), %model.module.decoder.binarize.4.running_var : Float(64, strides=[1], requires_grad=0, device=cuda:0), %model.module.decoder.binarize.6.weight : Float(64, 1, 2, 2, strides=[4, 4, 2, 1], requires_grad=1, device=cuda:0), %model.module.decoder.binarize.6.bias : Float(1, strides=[1], requires_grad=1, device=cuda:0), %659 : Float(64, 3, 7, 7, strides=[147, 49, 7, 1], requires_grad=0, device=cuda:0), %660 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %662 : Float(64, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0), %663 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %665 : Float(64, 64, 3, 3, strides=[576, 9, 3, 1], requires_grad=0, device=cuda:0), %666 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %668 : Float(256, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0), %669 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %671 : Float(256, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0), %672 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %674 : Float(64, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %675 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %677 : Float(64, 64, 3, 3, strides=[576, 9, 3, 1], requires_grad=0, device=cuda:0), %678 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %680 : Float(256, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0), %681 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %683 : Float(64, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %684 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %686 : Float(64, 64, 3, 3, strides=[576, 9, 3, 1], requires_grad=0, device=cuda:0), %687 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %689 : Float(256, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0), %690 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %692 : Float(128, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %693 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %695 : Float(512, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0), %696 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %698 : Float(512, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %699 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %701 : Float(128, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %702 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %704 : Float(512, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0), %705 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %707 : Float(128, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %708 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %710 : Float(512, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0), %711 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %713 : Float(128, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %714 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %716 : Float(512, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0), %717 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %719 : Float(256, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %720 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %722 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %723 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %725 : Float(1024, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %726 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %728 : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %729 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %731 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %732 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %734 : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %735 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %737 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %738 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %740 : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %741 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %743 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %744 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %746 : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %747 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %749 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %750 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %752 : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %753 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %755 : Float(1024, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0), %756 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %758 : Float(512, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %759 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %761 : Float(2048, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %762 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %764 : Float(2048, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0), %765 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %767 : Float(512, 2048, 1, 1, strides=[2048, 1, 1, 1], requires_grad=0, device=cuda:0), %768 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %770 : Float(2048, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %771 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %773 : Float(512, 2048, 1, 1, strides=[2048, 1, 1, 1], requires_grad=0, device=cuda:0), %774 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %776 : Float(2048, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0), %777 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %779 : Float(64, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=0, device=cuda:0), %780 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %781 : Float(4, strides=[1], requires_grad=0, device=cuda:0), %782 : Float(4, strides=[1], requires_grad=0, device=cuda:0), %783 : Float(4, strides=[1], requires_grad=0, device=cuda:0), %784 : Float(4, strides=[1], requires_grad=0, device=cuda:0), %785 : Float(4, strides=[1], requires_grad=0, device=cuda:0), %786 : Float(4, strides=[1], requires_grad=0, device=cuda:0)): %387 : Float(1, 3, 736, 960, strides=[2119680, 706560, 960, 1], requires_grad=1, device=cuda:0) = onnx::Cast[to=1](%input) # D:\Development\work now\emgu_newFeatures\DB\structure\model.py:54:0 %388 : Float(1, 3, 736, 960, strides=[2119680, 706560, 960, 1], requires_grad=1, device=cuda:0) = onnx::Cast[to=1](%387) # D:\Development\work now\emgu_newFeatures\DB\structure\model.py:55:0 %389 : Tensor = ^Scatter([0], None, 0)(%388) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\parallel\scatter_gather.py:19:0 %658 : Float(1, 64, 368, 480, strides=[11304960, 176640, 480, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[7, 7], pads=[3, 3, 3, 3], strides=[2, 2]](%389, %659, %660) %392 : Float(1, 64, 368, 480, strides=[11304960, 176640, 480, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%658) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:1204:0 %393 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::MaxPool[kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%392) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:659:0 %661 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%393, %662, %663) %396 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%661) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:1204:0 %664 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%396, %665, %666) %399 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%664) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:1204:0 %667 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%399, %668, %669) %670 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%393, %671, %672) %404 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Add(%667, %670) # D:\Development\work now\emgu_newFeatures\DB\backbones\resnet.py:172:0 %405 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%404) %673 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%405, %674, %675) %408 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%673) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:1204:0 %676 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%408, %677, %678) %411 : Float(1, 64, 184, 240, strides=[2826240, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%676) # C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\lib\site-packages\torch\nn\functional.py:1204:0 %679 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%411, %680, %681) %414 : Float(1, 256, 184, 240, strides=[11304960, 44160, 240, 1], requires_grad=1, device=cuda:0) = onnx::Add(%679, %405)