I was following a tutorial on YouTube, here’s my full code.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import cv2
import matplotlib.pyplot as plt
import numpy as np
path = "haarcascade_frontalface_default.xml"
font_scale = 1.5
font = cv2.FONT_HERSHEY_PLAIN
#set the rectangle background to white
rectangle_bgr = (255,255,255)
#make black image
img = np.zeros((500,500))
#set some text
text = "some text in a box"
#get the width and height of the text box
(text_width, text_height) = cv2.getTextSize(text, font, fontScale=font_scale, thickness=1)[0]
#set the text start position
text_offset_x = 10
text_offset_y = img.shape[0] - 25
#make the coords of the box with a small padding of two pixels
box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height -2))
cv2.rectangle(img, box_coords[0], box_coords[1], rectangle_bgr, cv2.FILLED)
cv2.putText(img, text, (text_offset_x, text_offset_y), font, fontScale=font_scale, color=(0, 0, 0), thickness=1)
cap = cv2.VideoCapture('yt1s.com - 27 Emotions Every Actor Should Know.mp4')
#if not cap.isOpened():
#cap = cv2.VideoCapture(0)
#if not cap.isOpened():
#raise IOError("Cannot Open webcam")
while True:
ret,frame = cap.read()
#eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#print(faceCascade.empty())
faces = faceCascade.detectMultiScale(gray,1.1,4)
for x,y,w,h in faces:
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
cv2.rectangle(frame, (x,y), (x+w, y+h), (255,0,0), 2)
facess = faceCascade.detectMultiScale(roi_gray)
if len(facess) == 0:
print("Face not detected")
else:
for (ex,ey,ew,eh) in facess:
face_roi = roi_color[ey: ey+eh, ex:ex + ew]
#error face_roi not defined
final_image = cv2.resize(face_roi, (224,224))
final_image = np.expand_dims(final_image,axis=0) ## needed fourth dimension
final_image = final_image/255.0
font = cv2.FONT_HERSHEY_SIMPLEX
Predictions = new_model.predict(final_image)
font_scale = 1.5
font = cv2.FONT_HERSHEY_PLAIN
if (np.argmax(Predictions)==0):
status = "Angry"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
elif (np.argmax(Predictions)==1):
status = "Disgust"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
elif (np.argmax(Predictions)==2):
status = "Fear"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
elif (np.argmax(Predictions)==3):
status = "Happy"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
elif (np.argmax(Predictions)==4):
status = "Sad"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
elif (np.argmax(Predictions)==5):
status = "Suprise"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255))
else:
status = "Neutral"
x1,y1,w1,h1 = 0,0,175,75
#draw black background rectangle
cv2.rectangle(frame, (x1,x1),(x1 + w1, y1 + h1), (0,0,0), -1)
#Add text
cv2.putText(frame, status, (x1 + int(w1/10),y1 + int(h1/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), 2)
cv2.putText(frame, status, (100, 150), font, 3, (0, 0, 255),2,cv2.LINE_4)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0))
cv2.imshow('Face Emotion Recognition',frame)
if cv2.waitKey(2) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()