Hi, theres some improvement in a new approach that I have tried. Can you go through my code? Im creating a bunch of smaller panoramas . Its coming quite decent but I want to stitch those smaller panoramas to get my final one. Can you see where Im going wrong.
import cv2
import numpy as np
import glob
import imutils
# DEFINE THE HELPER FUNCTIONS
def draw_matches(img1, keypoints1, img2, keypoints2, matches):
r, c = img1.shape[:2]
r1, c1 = img2.shape[:2]
# Create a blank image with the size of the first image + second image
output_img = np.zeros((max([r, r1]), c + c1, 3), dtype='uint8')
output_img[:r, :c, :] = np.dstack([img1])
output_img[:r1, c:c + c1, :] = np.dstack([img2])
# Go over all of the matching points and extract them
for match in matches:
img1_idx = match.queryIdx
img2_idx = match.trainIdx
(x1, y1) = keypoints1[img1_idx].pt
(x2, y2) = keypoints2[img2_idx].pt
# Draw circles on the keypoints
cv2.circle(output_img, (int(x1), int(y1)), 4, (0, 255, 255), 1)
cv2.circle(output_img, (int(x2) + c, int(y2)), 4, (0, 255, 255), 1)
# Connect the same keypoints
cv2.line(output_img, (int(x1), int(y1)), (int(x2) + c, int(y2)), (0, 255, 255), 1)
return output_img
def warpImages(img1, img2, H):
rows1, cols1 = img1.shape[:2]
rows2, cols2 = img2.shape[:2]
list_of_points_1 = np.float32([[0, 0], [0, rows1], [cols1, rows1], [cols1, 0]]).reshape(-1, 1, 2)
temp_points = np.float32([[0, 0], [0, rows2], [cols2, rows2], [cols2, 0]]).reshape(-1, 1, 2)
# When we have established a homography we need to warp perspective
# Change field of view
list_of_points_2 = cv2.perspectiveTransform(temp_points, H)
list_of_points = np.concatenate((list_of_points_1, list_of_points_2), axis=0)
[x_min, y_min] = np.int32(list_of_points.min(axis=0).ravel() - 0.5)
[x_max, y_max] = np.int32(list_of_points.max(axis=0).ravel() + 0.5)
translation_dist = [-x_min, -y_min]
H_translation = np.array([[1, 0, translation_dist[0]], [0, 1, translation_dist[1]], [0, 0, 1]])
output_img = cv2.warpPerspective(img2, H_translation.dot(H), (x_max - x_min, y_max - y_min))
output_img[translation_dist[1]:rows1 + translation_dist[1], translation_dist[0]:cols1 + translation_dist[0]] = img1
# print(output_img)
return output_img
def trim(frame):
#crop top
if not np.sum(frame[0]):
return trim(frame[1:])
#crop top
if not np.sum(frame[-1]):
return trim(frame[:-2])
#crop top
if not np.sum(frame[:,0]):
return trim(frame[:,1:])
#crop top
if not np.sum(frame[:,-1]):
return trim(frame[:,:-2])
return frame
# End of Funcion definitions
# Main program begins here
# Define input and output paths
input_path = "/Users/akshayacharya/Desktop/Panorama/Bazinga/Test images for final/Highfps2fps/*.jpg"
output_path = "Output/o5.jpg"
# Define whatever variables necessary
input_img = glob.glob(input_path)
img_path = sorted(input_img)
for i in range(0,len(img_path)):
img = cv2.imread(img_path[i])
img = cv2.resize(img,(400,400))
cv2.imwrite(img_path[i],img)
tmp = img_path[0]
flag = True
pano = []
j = 1
for i in range(1, len(img_path)):
if flag:
img1 = cv2.imread(tmp, cv2.COLOR_BGR2GRAY)
img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
flag = False
img1 = cv2.resize(img1, (0,0), fx=1, fy=1)
img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
img2 = cv2.resize(img2, (0,0), fx=1, fy=1)
orb = cv2.ORB_create(nfeatures=2000)
keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
keypoints2, descriptors2 = orb.detectAndCompute(img2, None)
# cv2.imshow('1',cv2.drawKeypoints(img1, keypoints1, None, (255, 0, 255)))
# cv2.imshow('2',cv2.drawKeypoints(img2, keypoints2, None, (255,255, 255)))
# cv2.waitKey(0)
# Create a BFMatcher object.
# It will find all of the matching keypoints on two images
bf = cv2.BFMatcher_create(cv2.NORM_HAMMING)
# Find matching points
matches = bf.knnMatch(descriptors1, descriptors2, k=2)
# print("Descriptor of the first keypoint: ")
# print(descriptors1[0])
# print(type(matches))
all_matches = []
for m, n in matches:
all_matches.append(m)
img3 = draw_matches(img1, keypoints1, img2, keypoints2, all_matches[:])
# v2.imshow('Matches',img3)
# cv2.waitKey(0)
# Finding the best matches
good = []
for m, n in matches:
if m.distance < 0.9 * n.distance:
good.append(m)
# cv2.imshow('Final1',cv2.drawKeypoints(img1, [keypoints1[m.queryIdx] for m in good], None, (255, 0, 255)))
# cv2.imshow('Final2',cv2.drawKeypoints(img2, [keypoints2[m.queryIdx] for m in good], None, (255, 0, 255)))
# cv2.waitKey(0)
MIN_MATCH_COUNT = 15
if len(good) > MIN_MATCH_COUNT:
# Convert keypoints to an argument for findHomography
src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# Establish a homography
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = warpImages(img2, img1, M)
img1 = result
if i%5 == 0:
stitched = img1
print(np.shape(stitched))
stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10,
cv2.BORDER_CONSTANT, (0, 0, 0))
# convert the stitched image to grayscale and threshold it
# such that all pixels greater than zero are set to 255
# (foreground) while all others remain 0 (background)
gray = cv2.cvtColor(stitched, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]
# find all external contours in the threshold image then find
# the *largest* contour which will be the contour/outline of
# the stitched image
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
# allocate memory for the mask which will contain the
# rectangular bounding box of the stitched image region
mask = np.zeros(thresh.shape, dtype="uint8")
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1)
# create two copies of the mask: one to serve as our actual
# minimum rectangular region and another to serve as a counter
# for how many pixels need to be removed to form the minimum
# rectangular region
minRect = mask.copy()
sub = mask.copy()
# keep looping until there are no non-zero pixels left in the
# subtracted image
while cv2.countNonZero(sub) > 0:
# erode the minimum rectangular mask and then subtract
# the thresholded image from the minimum rectangular mask
# so we can count if there are any non-zero pixels left
minRect = cv2.erode(minRect, None)
sub = cv2.subtract(minRect, thresh)
# find contours in the minimum rectangular mask and then
# extract the bounding box (x, y)-coordinates
cnts = cv2.findContours(minRect.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
(x, y, w, h) = cv2.boundingRect(c)
# use the bounding box coordinates to extract the our final
# stitched image
stitched = stitched[y:y + h, x:x + w]
# cv2.imwrite("cropped.jpg", stitched)
# writeStatus = cv2.imwrite(output_path, stitched)
# if writeStatus is True:
# print("image written")
# else:
# print("problem") # or raise exception, handle problem, etc.
#stitched = cv2.resize(stitched, (1080, 720))
pano.append(stitched)
#stitched = cv2.resize(stitched,(np.shape(stitched)[0],1500))
#titched1 = trim(stitched)
cv2.imshow("Stitch", stitched)
cv2.waitKey(0)
cv2.imwrite(f"Test images for final/Highfps2fps/temp_pano/frame{j}.jpg", stitched)
j += 1
try:
img1 = cv2.imread(img_path[i+1])
i= i+1
img1 = cv2.resize(img1, (400,400))
print(np.shape(img1))
except:
continue
#cv2.imshow("Stitch", stitched)
#cv2.waitKey(0)
final_input = "/Users/akshayacharya/Desktop/Panorama/Bazinga/Test images for final/Highfps2fps/temp_pano/*.jpg"
input_image = glob.glob(final_input)
image_path = sorted(input_image)
for i in range(0,len(image_path)):
img = cv2.imread(image_path[i])
img = cv2.resize(img,(1080,720))
cv2.imwrite(image_path[i],img)
temp = image_path[0]
flag = True
for i in range(1, len(image_path)):
if flag:
img1 = cv2.imread(temp, cv2.COLOR_BGR2GRAY)
img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
flag = False
img1 = cv2.resize(img1, (0,0), fx=1, fy=1)
img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
img2 = cv2.resize(img2, (0,0), fx=1, fy=1)
orb = cv2.ORB_create(nfeatures=2000)
keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
keypoints2, descriptors2 = orb.detectAndCompute(img2, None)
# cv2.imshow('1',cv2.drawKeypoints(img1, keypoints1, None, (255, 0, 255)))
# cv2.imshow('2',cv2.drawKeypoints(img2, keypoints2, None, (255,255, 255)))
# cv2.waitKey(0)
# Create a BFMatcher object.
# It will find all of the matching keypoints on two images
bf = cv2.BFMatcher_create(cv2.NORM_HAMMING)
# Find matching points
matches = bf.knnMatch(descriptors1, descriptors2, k=2)
# print("Descriptor of the first keypoint: ")
# print(descriptors1[0])
# print(type(matches))
all_matches = []
for m, n in matches:
all_matches.append(m)
img3 = draw_matches(img1, keypoints1, img2, keypoints2, all_matches[:])
# v2.imshow('Matches',img3)
# cv2.waitKey(0)
# Finding the best matches
good = []
for m, n in matches:
if m.distance < 0.9 * n.distance:
good.append(m)
# cv2.imshow('Final1',cv2.drawKeypoints(img1, [keypoints1[m.queryIdx] for m in good], None, (255, 0, 255)))
# cv2.imshow('Final2',cv2.drawKeypoints(img2, [keypoints2[m.queryIdx] for m in good], None, (255, 0, 255)))
# cv2.waitKey(0)
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
# Convert keypoints to an argument for findHomography
src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# Establish a homography
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = warpImages(img2, img1, M)
img1 = result
cv2.imshow("Comeon", img1)
cv2.waitKey(0)
I cant attach more than one image as I am a new user, I will upload panorama 2 and the final panorama separately.