Consider following snippet:
stereo = cv2.StereoSGBM_create(minDisparity=1, numDisparities=16, blockSize=11)
imgL = np.array([
[0, 0, 0, 0, 119, 166, 97, 48, 56, 100, 68, 104, 163, 172, 87, 81, 129, 91, 96, 75, 33, 60],
[0, 0, 0, 0, 216, 212, 146, 107, 123, 157, 208, 110, 134, 136, 49, 139, 125, 110, 66, 106,
69, 84],
[0, 0, 0, 0, 184, 204, 195, 180, 162, 174, 148, 78, 92, 125, 141, 202, 128, 75, 91, 188, 91,
97],
[0, 0, 0, 0, 76, 218, 211, 185, 95, 76, 126, 110, 121, 183, 153, 177, 206, 62, 104, 204,
198, 168],
[0, 0, 0, 0, 99, 176, 169, 180, 105, 50, 184, 128, 100, 157, 82, 43, 101, 67, 85, 85, 134,
195],
[0, 0, 0, 0, 89, 125, 150, 215, 102, 100, 216, 114, 119, 127, 177, 71, 94, 191, 214, 109,
116, 188],
[0, 0, 0, 0, 56, 140, 142, 153, 96, 87, 122, 119, 222, 202, 142, 55, 66, 127, 172, 135, 64,
66],
[0, 0, 0, 0, 23, 83, 87, 96, 115, 165, 101, 134, 204, 223, 100, 36, 92, 174, 157, 155, 202,
146]
], dtype=np.uint8)
imgR = np.array([
[0, 0, 0, 0, 138, 170, 167, 75, 65, 162, 152, 147, 204, 227, 205, 158, 105, 178, 217, 176,
157, 128],
[0, 0, 0, 0, 116, 142, 103, 65, 111, 187, 190, 157, 122, 134, 194, 117, 119, 189, 217, 141,
134, 100],
[0, 0, 0, 0, 177, 129, 70, 62, 165, 191, 145, 101, 91, 122, 153, 93, 81, 196, 173, 159, 150,
54],
[0, 0, 0, 0, 177, 133, 123, 69, 65, 90, 104, 115, 192, 157, 131, 111, 32, 61, 65, 168, 159,
107],
[0, 0, 0, 0, 68, 73, 54, 26, 18, 138, 182, 83, 109, 81, 130, 82, 24, 35, 122, 194, 186,
150],
[0, 0, 0, 0, 166, 97, 86, 118, 78, 136, 239, 124, 119, 154, 238, 125, 86, 45, 144, 196, 231,
149],
[0, 0, 0, 0, 173, 150, 214, 116, 74, 145, 204, 213, 206, 192, 178, 102, 124, 101, 128, 166,
99, 57],
[0, 0, 0, 0, 100, 120, 85, 10, 93, 97, 111, 175, 83, 122, 182, 72, 91, 131, 58, 127, 100,
29]
], dtype=np.uint8)
disparity = stereo.compute(imgL, imgR) / 16
This produces a different matrix each time. Is this to be expected? Is my input not proper?
version: opencv-contrib-python-headless 4.10.0.84 (also opencv-python)
system: Linux version 6.6.31-linuxkit (root@buildkitsandbox) (gcc (Alpine 13.2.1_git20231014) 13.2.1 20231014, GNU ld (GNU Binutils) 2.41) #1 SMP Thu May 23 08:36:57 UTC 2024
Python: 3.10.14 (also with later versions)