How to improve contour detection

Hello there!

Is it possible to improve the contour detection in images like these?

image

I can’t detect the contour correctly on some rice when they are too close together.

What would be the best technique in this case?

Thank you!

please provide the original image and the code you used.

Sure!

Original image:

9bea7868-c34b-11ec-885a-0242ac120006

My code:

import cv2
import numpy as np
from scipy.spatial import distance

while True:

    image = cv2.imread('/path/original-image.png')
    
    image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    thresh, output_binthresh = cv2.threshold(image_gray, 48, 255, cv2.THRESH_BINARY)    
    cv2.imshow("Binary Threshold (fixed)", output_binthresh)

    thresh, output_otsuthresh = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    cv2.imshow("Binary Threshold (otsu)", output_otsuthresh)

    output_adapthresh = cv2.adaptiveThreshold (image_gray, 253, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 51, 0)
    cv2.imshow("Adaptive Thresholding", output_adapthresh)

    kernel = np.ones((3,3),np.uint8)
    output_erosion = cv2.erode(output_adapthresh, kernel)
    cv2.imshow("Morphological Erosion", output_erosion)

    contours, _ = cv2.findContours(output_erosion, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    output_contour = cv2.cvtColor(image_gray, cv2.COLOR_GRAY2BGR)
    cv2.drawContours(output_contour, contours, -1, (0, 0, 255), 2)
    cv2.imshow("Contours", output_contour)

    contours_sorted = sorted(contours, key=lambda ctr: cv2.boundingRect(ctr)[0])

    image_result = image.copy()

    pixelsPerMm = 5.509

    rices = []

    for c in contours_sorted:

        box = cv2.minAreaRect(c)
        box = cv2.boxPoints(box)
        box = np.array(box, dtype="int")
       
        (top_left, top_right, bottom_right, bottom_left) = box

        distance_a = distance.euclidean((top_left[0], top_left[1]), (top_right[0], top_right[1]))
        distance_b = distance.euclidean((top_left[0], top_left[1]), (bottom_left[0], bottom_left[1]))

        dimension_a = distance_a / pixelsPerMm
        dimension_b = distance_b / pixelsPerMm

        length = max(dimension_a, dimension_b)        
        width = min(dimension_a, dimension_b)        

        if length < 1.4 or length > 12.3:
            continue
        if width < 1.4 or width > 3.5:
            continue

        rice = [box.astype("int")]

        # Check class
        if length <= 1.6:
            rices.append({'class': 'class1', 'box': rice, 'color': (255, 0, 255), 'width': width, 'length': length, 'top_right': top_right})
        elif length <= 1.8:
            rices.append({'class': 'class2', 'box': rice, 'color': (255, 0, 0), 'width': width, 'length': length, 'top_right': top_right})
        elif length <= 3.8:
            rices.append({'class': 'class3', 'box': rice, 'color': (0, 255, 0), 'width': width, 'length': length, 'top_right': top_right})
        elif length <= 5.6:
            rices.append({'class': 'class4', 'box': rice, 'color': (51, 255, 255), 'width': width, 'length': length, 'top_right': top_right})
        elif length <= 12:
            rices.append({'class': 'class5', 'box': rice, 'color': (0, 0, 255), 'width': width, 'length': length, 'top_right': top_right})
        else:
            continue       
        
        
    for rice in rices:
        cv2.drawContours(image_result, rice['box'], -1, rice['color'], 1)
        cv2.putText(image_result, "l={:.1f}mm".format(rice['length']), (rice['top_right'][0]-10, rice['top_right'][1]-20), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
        cv2.putText(image_result, "w={:.1f}mm".format(rice['width']), (rice['top_right'][0]-10, rice['top_right'][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)


    cv2.imshow("Result", image_result)

    key = cv2.waitKey(1)

    if key%256 == 27:
        break

cv2.destroyAllWindows()