I’d like to convert only the drawcontours area to RGB images, then convert it to HSV again in order to update lower and upper values every frame over time.
Note: I’d like to avoid using the ROI of the rectangle area because of drawcontours is the actual area.
Full my code:
import cv2
import numpy as np
import time
cap = cv2.VideoCapture(0)
width = cap.get(3) # float
height = cap.get(4) # float
time.sleep(2.0)
while (1):
_, img = cap.read()
clone1 = img.copy()
if _ is True:
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
else:
continue
black_lower = np.array([0, 0, 0], np.uint8)
black_upper = np.array([180, 255, 30], np.uint8)
black = cv2.inRange(hsv, black_lower, black_upper)
# Morphological Transform, Dilation
kernal = np.ones((5, 5), "uint8")
black = cv2.dilate(black, kernal)
res_black = cv2.bitwise_and(img, img, mask=black)
(_, contours, hierarchy) = cv2.findContours(black, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key=cv2.contourArea, reverse=True)[:1] # get largest contour area
for pic, contour in enumerate(cnts):
area = cv2.contourArea(contour)
if (area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 0), 2)
roi1 = clone1[y:y + h, x:x + h]
cv2.imshow("roi1", roi1)
cv2.putText(img, "Black Colour", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0))
bbbbb = cv2.drawContours(img, [contour], -1, (0, 255, 0), 3) # segmentation
# roi2 = clone1[contour[[0]]]
# cv2.imshow("roi2", roi2)
cv2.imshow("Color Tracking", img)
if cv2.waitKey(10) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break