Hi, I am trying to detect between two types of White (Alaskan White and Pearl White) but I am not getting results, can anyone help me? This is my code and these are the two types of white.
import cv2
import numpy as np
# capturing video through webcam
cap = cv2.VideoCapture(0)
while(1):
_, img = cap.read()
# converting frame(img == BGR) to HSV(hue-saturation-value)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# red color
red_lower = np.array([136,87,111],np.uint8)
red_upper = np.array([180,255,255],np.uint8)
# blue color
blue_lower = np.array([99,115,150],np.uint8)
blue_upper = np.array([110,255,255],np.uint8)
# yellow color
yellow_lower = np.array([22,60,200],np.uint8)
yellow_upper = np.array([60,255,255],np.uint8)
# white color
white_lower = np.array([0,0,200],np.uint8)
white_upper = np.array([180,20,255],np.uint8)
# black color
black_lower = np.array([0,0,0],np.uint8)
black_upper = np.array([180,255,30],np.uint8)
# all color together
red = cv2.inRange(hsv, red_lower, red_upper)
blue = cv2.inRange(hsv, blue_lower, blue_upper)
yellow = cv2.inRange(hsv, yellow_lower, yellow_upper)
white = cv2.inRange(hsv, white_lower, white_upper)
black = cv2.inRange(hsv, black_lower, black_upper)
# Morphological Transform, Dilation
kernal = np.ones((5, 5), "uint8")
red = cv2.dilate(red, kernal)
res_red = cv2.bitwise_and(img, img, mask = red)
blue = cv2.dilate(blue, kernal)
res_blue = cv2.bitwise_and(img, img, mask = blue)
yellow = cv2.dilate(yellow, kernal)
res_yellow = cv2.bitwise_and(img, img, mask = yellow)
white = cv2.dilate(white, kernal)
res_white = cv2.bitwise_and(img, img, mask = white)
black = cv2.dilate(black, kernal)
res_black = cv2.bitwise_and(img, img, mask = black)
# Tracking red
contours, hierarchy = cv2.findContours(red, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.putText(img, "ROJO: ", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255))
# Tracking blue
contours, hierarchy = cv2.findContours(blue, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.putText(img, "AZUL: ", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0))
# Tracking yellow
contours, hierarchy = cv2.findContours(yellow, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, "AMARILLO: ", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0))
# Tracking white
contours, hierarchy = cv2.findContours(white, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 2)
cv2.putText(img, "BLANCO: ", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255))
# Tracking black
contours, hierarchy = cv2.findContours(black, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area > 300):
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 0), 2)
cv2.putText(img, "NEGRO: ", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0))
cv2.imshow("Color Tracking", img)
if cv2.waitKey(10) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break